Newton polygons and formal Gevrey indices in the Cauchy-Goursat-Fuchs type equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Newton Polygons of Polynomial Ordinary Differential Equations

In this paper we show some properties of the Newton polygon of a polynomial ordinary differential equation. We give the relation between the Newton polygons of a differential polynomial and its partial derivatives. Newton polygons of evaluations of differential polynomials are also described.

متن کامل

Inhomogeneous Gevrey Ultradistributions and Cauchy Problem

AMS Mathematics Subject Classification (2000): 46F05, 35E15, 35S05.

متن کامل

On Cauchy-type functional equations

LetG be a Hausdorff topological locally compact group. LetM(G) denote the Banach algebra of all complex and bounded measures on G. For all integers n ≥ 1 and all μ ∈ M(G), we consider the functional equations ∫ G f(xty)dμ(t) = ∑n i=1gi(x)hi(y), x,y ∈ G, where the functions f , {gi}, {hi}: G → C to be determined are bounded and continuous functions on G. We show how the solutions of these equati...

متن کامل

Newton polygons and curve gonalities

We give a combinatorial upper bound for the gonality of a curve that is defined by a bivariate Laurent polynomial with given Newton polygon. We conjecture that this bound is generically attained, and provide proofs in a considerable number of special cases. One proof technique uses recent work of M. Baker on linear systems on graphs, by means of which we reduce our conjecture to a purely combin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 1991

ISSN: 0025-5645

DOI: 10.2969/jmsj/04320305